Global roles of Ste11p, cell type, and pheromone in the control of gene expression during early sexual differentiation in fission yeast.
نویسندگان
چکیده
Fission yeast cells belong to one of two specialized cell types, M or P. Specific environmental conditions trigger sexual differentiation, which leads to an internal program starting with pheromone signaling between M and P cells, followed by mating, meiosis, and sporulation. The initial steps of this process are controlled by Ste11p, a master transcriptional regulator that activates the expression of cell type-specific genes (only expressed in either M or P cells) as well as genes expressed in both M and P cells. Pheromone signaling is activated by Ste11p-dependent transcription and, in turn, enhances some of this transcription in a positive feedback. To obtain a genomewide view of Ste11p target genes, their cell-type specificity, and their dependence on pheromone, we used DNA microarrays along with different genetic and environmental manipulations of fission yeast cells. We identified 78 Ste11p-dependent genes, 12 and 4 of which are only expressed in M and P cells, respectively. These genes show differing grades of pheromone dependencies for Ste11p-activated transcription, ranging from complete independence to complete dependence on pheromone. We systematically deleted all novel cell type-specific genes and characterized their phenotype during sexual differentiation. A comparison with a similar data set from the distantly related budding yeast reveals striking conservation in both number and types of the proteins that define cell types. Given the divergent mechanisms regulating cell type-specific gene expression, our results highlight the plasticity of regulatory circuits, which evolve to allow adaptation to changing environments and lifestyles.
منابع مشابه
Key Regulatory Gene Expression in Erythroleukemia Differentiation
The characteristics of cellular and molecular mechanisms associated with cell proliferation and differentiation is important to understand malignancy. In this report we characterise a leukemic model, D5A1, to study the action of differentiation agent, cellular events and gene expression of the selected transcription factors. Cells induced with 4 mM hexamethylene bisacetamide (HMBA) caused signs...
متن کاملEffects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells
Background Specific growth factors and feeder layers seem to have important roles in in vitro embryonic stem cells (ESCs) differentiation. In this study,the effects of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs were studied. MaterialsAndMethods Cell suspension was prepared from one-day-old embryoid bo...
متن کاملTranscriptional regulation of a Ras nucleotide-exchange factor gene by extracellular signals in fission yeast.
The ste6 gene of Schizosaccharomyces pombe encodes a putative GDP-GTP exchange factor for the ras1 gene product. Genetic analysis of the ste6 and ras1 genes has shown that they are required for mating and for the response to mating pheromones. In this study we show that expression of the ste6-encoded mRNA is induced by nitrogen starvation, the physiological signal that triggers mating and sexua...
متن کاملI-12: Nuclear Reprogramming in Bovin Somatic Cell Nuclear Transfer
Somatic cell nuclear transfer (SCNT or cloning) returns a differentiated cell to a totipotent status; a process termed nuclear reprogramming. Reproductive cloning has potential applications in both agriculture and biomedicine, but is limited by low efficiency. To understand the deficiencies of nuclear reprogramming, our research has focused on both candidate genes and global gene expression pat...
متن کاملA novel gene, msa1, inhibits sexual differentiation in Schizosaccharomyces pombe.
Sexual differentiation in the fission yeast Schizosaccharomyces pombe is triggered by nutrient starvation or by the presence of mating pheromones. We identified a novel gene, msa1, which encodes a 533-aa putative RNA-binding protein that inhibits sexual differentiation. Disruption of the msa1 gene caused cells to hypersporulate. Intracellular levels of msa1 RNA and Msa1 protein diminished after...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 42 شماره
صفحات -
تاریخ انتشار 2006